Priča

Space Shuttle Crawler

Space Shuttle Crawler



We are searching data for your request:

Forums and discussions:
Manuals and reference books:
Data from registers:
Wait the end of the search in all databases.
Upon completion, a link will appear to access the found materials.


Launching To Space at Crawl

Kako NASA-ini masovni transporteri gusjeničari prenose milione funti rakete na lansirnu rampu jedan centimetar odjednom.

Dobrodošli na Apollo Week, koji slavi 50 godina od misije Apollo 11, objašnjavajući šta to danas znači i istražujući kako će njegovo naslijeđe oblikovati budućnost istraživanja svemira.

Za dosezanje prostora potrebno je mnogo gasa, a gas je težak.

Ukupna težina polijetanja sada nepostojećeg sistema spejs šatla iznosila je 4,5 miliona funti. Tu težinu činili su Shuttle & rsquos pojačivači, vanjski spremnik i gorivo. Dodajte mobilnu platformu za lansiranje (MLP) i čitava montaža težila je 12,6 miliona funti.

Dakle, kako doći do skoro 13 miliona funti na lansirnu rampu? Napravite transporter težak 6,3 miliona funti veličine bejzbol terena.

NASA-ina dva transportera gusjenica, nazvana jednostavno CT-1 i CT-2, povijesne su mašine iz više razloga. Oni su prenijeli sve, od prve rakete i kapsule Saturn V za misiju Apollo 4 1967. do svemirskog šatla Atlantis za posljednju misiju shuttlea (STS-135) 2011. I njihov najveći izazov predstoji jer su transporteri gusjeničari opremljeni za nošenje Svemirska lansirna raketa (SLS), svemirska letjelica koja bi jednog dana mogla pomoći ljudima na Marsu.

Čudni počeci

Početkom 60-ih NASA je razmatrala nekoliko metoda transporta svemirskih letjelica, uključujući željezničke pruge i sheme kanala i barži. Ali NASA-ini inženjeri bili su inspirirani rudarskim operacijama koje su koristile mamutsku opremu poput Bucyrus-Erie & ldquoBig Hog & rdquo lopata za iskopavanje traka. Big Hog je sjedio na nezavisnim stazama na dizelski pogon, bez veza sa željezničkim ili vodenim putevima. Konačno, suparnik kompanije Bucyrus, kompanija Marion Shovel Company iz Mariona, Ohio, 1965. će izgraditi gusjenice koristeći gusjenični dizajn.

No, prije 53 godine, transporter gusjeničar izgrađen je za prijevoz svemirske letjelice Apollo između Svemirskog centra Kennedy & Zgrada skupštine vozila rsquos (VAB) i lansirnih rampi 39A i 39B, udaljenih 3,4 i 4,2 milje.

Putovanje od VAB -a do lansirne rampe traje oko šest sati, a godinama su transporteri gusjeničari uspjeli prevaliti više od 300 puta noseći sve od prve rakete i kapsule Saturn V za misiju Apollo 4 1967. do svemirskog šatla Atlantis za posljednja misija shuttlea (STS-135) 2011. NASA procjenjuje da je svaki gusjeničar prešao preko 2200 milja na šljunčanim stazama zvanim & ldquocrawlerways. & rdquo

Gusjenice su među najvećim samohodnim kopnenim vozilima ikada proizvedenim, a njihova misija počinje kada se izađe iz dvorišta gusjenica s posadom od 15 do 20 inženjera i tehničara. Kreće prema MLP -u, podiže ga i nosi u VAB gdje spušta MLP na visoka postolja.

Nakon što su svemirska letjelica i pojačivači sastavljeni na MLP -u, gusjeničar klizi ispod MLP -a i učvršćuje cijeli teret za svoju palubu. Zatim kreće na mjesto lansiranja ujednačavajući najveće opterećenje laserskim sistemom navođenja i ogromnim cilindrima za dizanje, izjednačavanje i izravnavanje na svakom uglu.

Sa putevima gusjenicama obloženim & ldquoAlabama riječnom stijenom & rdquo iz kamenoloma u Alabami, transporteri gusjeničarima kreću se brzinom od 1 km / h, a radovi prskaju stijene vodom kako bi se izbjegla višak prašine. Iako mamutski drhtavi, transporter gusjeničar može se kretati s izuzetnom preciznošću, putujući samo jednu osminu inča, kako izvještava časopis Road & amp Track, koji je & ldquoroad testirao & gusjenice 1970-ih.

Budući da je svako mjesto za lansiranje izgrađeno na vrhu nagnute piramide zemlje, gusjeničar koristi svoje JEL -ove kako bi održao platformu na razini sve do vrha gdje postavlja platformu. Zatim se parkira daleko od jastučića kako bi se izbjeglo oštećenje tijekom lansiranja. Nakon što se sigurno poveže s svemirom, gusjeničar preuzima MLP i vraća se u dvorište gusjenica.

Originalni hibrid

Voditelj projekta NASA & rsquos Crawler, John Giles, naziva prijevoznike & ldquooriginalnim & rdquo hibridnim vozilima. & ldquoTo & rsquos jer koristimo motore za proizvodnju električne energije koja nas pokreće putem elektromotora, & rdquo je rekao Popularna mehanika.

To je ista osnovna ideja koju Chevy koristi na svojim Volt hibridnim automobilima. Gusjeničar koristi četiri V16 dizelska motora & mdashtwo sprijeda, dva straga. Na svakom kraju jedna proizvodi istosmjernu struju koja se šalje na osam električnih vučnih motora koji pokreću dva kamiona. Drugi dizel proizvodi izmjeničnu struju za svjetla, računare i napajanje korisnog tereta. Kamioni sadrže ogromne ležajeve koji podržavaju po dvije masivne grede. Svaki pojas sadrži 57 pojasa gazećeg sloja & ldquoshoes & rdquo, a svaka cipela je duga 7,5 stopa, široka 1,5 stopa i teška 2100 kilograma.

Sa osam cipela od jedne tone koji istovremeno udaraju o zemlju, & ldquoy dobijate vibracije niske frekvencije koje osjećate dok se vozite po gusjenici. & Rsquos je mnogo poput boravka na brodu, & rdquo Giles kaže.

Na kraju programa Shuttle 2012. NASA je izvršila opsežno istraživanje alternativa starim transporterima gusjeničarima, ali je zaključila da su oni i dalje najefikasniji način prebacivanja tereta na jastuk, a kineski svemirski program se složio. I oni koriste transportere na svom mjestu za lansiranje svemirskih letjelica Wenchang na otoku Hainan, ali njihovi kotači znače da mogu nositi samo oko jedne trećine onoliko koliko transportiraju NASA-ini gusjeničari.

Puzanjem u budućnost

Sa sljedećom američkom raketom SLS, američkim & rsquosom SLS, CT-2 se nadograđuje tako da može nositi teret od 18 miliona funti. Dodani su novi JEL-ovi, kočnice, valjkasti ležajevi, 16 obnovljenih mjenjača i novi Cummins V16 twin-turbo dizel motor. CT-1 će dobiti manje teške obnove i dalje će se koristiti za terete koji nisu SLS.

Dva gusjeničarstva izvorno su koštala ukupno 14 miliona dolara, što nije loše ako se protegne na više od 50 godina s planovima da posluže još najmanje 20 godina.

Ako se ponovno obnove, NASA -ini inženjeri kažu da će morati ojačati krovnu gredu u jednom od gusjenica. Tamo su inženjeri Marion Shovel -a koji su ga izgradili potpisali svoja imena i nacrtali Mustang iz 1965. godine, proglasivši CT -ove najnaprednijim mišićnim automobilima na Zemlji.

Ova priča je prvobitno objavljena 14. februara 2018. Ažurirana je za 50. godišnjicu Apola 11.


Gusjeničar - Transporter

Putujući 1 milju na sat, gusjeničar nosi lansirno vozilo sa mobilnom platformom za lansiranje do lansirne rampe pomoću laserskog sistema navođenja i spušta ih oboje na postolje padova. Nakon lansiranja, alat za indeksiranje ponovo podiže pokretni pokretač i vraća ga. Svaki transporter putuje na osam gusjeničnih pojaseva sa 57 gusjenica "cipela".

U jednom gusjeničaru nalazi se 16 vučnih motora, dva izmjenična i dva istosmjerna generatora te dvije upravljačke kabine koje voze vozilo prema naprijed i nazad. Sistem za dizanje, izjednačavanje i nivelisanje (JEL) održava gornju palubu i tačke preuzimanja u svakom trenutku, čak i kada se krećete po nagibu, kako biste spriječili prevrtanje korisnog tereta.

NASA-in program za razvoj i operaciju zemaljskog sistema (GSDO) obnavljao je gusjenice od posljednjeg lansiranja svemirske letjelice 2011. CT-1 se jača za nošenje lansirnih lansirnih vozila u komercijalne svrhe, dok se CT-2 modificira kako bi podržao NASA-in sistem lansiranja svemira. (SLS) i svemirski brod Orion. JEL sistem se nadograđuje kako bi se povećala težina gusjenica sa prethodnih 12 miliona funti na potrebnih 18 miliona funti.

Putujući 1 milju na sat, gusjeničar nosi lansirno vozilo sa mobilnom platformom za lansiranje do lansirne rampe pomoću laserskog sistema navođenja i spušta ih oboje na postolje padova. Nakon lansiranja, alat za indeksiranje ponovo podiže pokretni pokretač i vraća ga. Svaki transporter putuje na osam pojaseva s gusjenicama sa 57 gusjenica.

U jednom gusjeničaru nalazi se 16 vučnih motora, dva izmjenična i dva istosmjerna generatora te dvije upravljačke kabine koje voze vozilo prema naprijed i nazad. Sistem za dizanje, izjednačavanje i nivelisanje (JEL) održava gornju palubu i tačke preuzimanja u svakom trenutku, čak i kada se krećete po nagibu, kako biste spriječili prevrtanje korisnog tereta.

NASA-in program za razvoj i operaciju zemaljskog sistema (GSDO) obnavljao je gusjenice od posljednjeg lansiranja svemirske letjelice 2011. CT-1 se jača za nošenje lansirnih lansirnih vozila u komercijalne svrhe, dok se CT-2 modificira kako bi podržao NASA-in sistem lansiranja svemira. (SLS) i svemirski brod Orion.

JEL sistem se nadograđuje kako bi se povećala težina gusjenica sa prethodnih 12 miliona funti na potrebnih 18 miliona funti.

Teme. Ovaj povijesni biljeg je naveden na ovim listama tema: Zračni i svemirski prostor i istraživanje bikova i značajke koje je napravio čovjek. Značajna istorijska godina za ovaj unos je 1965.

Location. 36 & deg 26.21 ′ N, 89 & deg 4.252 ′ W. Marker se nalazi u Union Cityju, Tennessee, u okrugu Obion. Marker je na Graham Drive -u. Unutra Discover Park America u Exploration području lijevi bočni park prema natrag. Dodirnite za kartu. Marker se nalazi na ili blizu ove poštanske adrese: 210-260 Graham Dr, Union City TN 38261, Sjedinjene Američke Države. Dodirnite za upute.

Ostali markeri u blizini. Najmanje 8 drugih markera nalazi se na pješačkoj udaljenosti od ovog markera. YP-84A Thunderjet (ovdje, pored ovog markera) Slijetanje stabljike (ovdje, pored ovog markera) F11F-1 Tigar (nekoliko koraka od ovog markera) UH-1B Irokez (nekoliko koraka od ovog markera) Geodetska kupola (a nekoliko koraka od ovog markera) Kompleks za lansiranje Titan 1 (nekoliko koraka od ovog markera) Inženjering kupole (nekoliko koraka od ovog markera) LR91 -AJ -3 motor (na udaljenosti od ovog markera). Dodirnite za popis i mapu svih markera u Union Cityju.

Takođe pogledajte. . . NASA -ini džinovski gusjeničari napunili su 50 godina, pivot buduće istraživanje. NASA-ini transporteri gusjeničari, dva najveća vozila ikad izgrađena, nosili su NASA-ine rakete i svemirske letjelice do lansirne rampe posljednjih 50 godina. Oni će se nastaviti


Prema https://www.popularmechanics.com/space/rockets/a15777930/launching-to-space-at-a-crawl/
to je smanjenje prašine koja nastaje dok gusjeničar drobi neke od stijena "Alabama River".

Fotografija prikazuje zdrobljenu stijenu iza gusjenice. (Izvor - Organski mramor)

Dodatak:
Prema dokumentarnom filmu 'When We Were Apollo', šljunak nije bio dio originalnog dizajna, već je dodan kao žrtvena nosiva površina kako bi se spriječila oštećenja koja su nastala na unutrašnjim ležajevima. (Postavlja se pitanje: da li se nakon upotrebe grebe i povremeno zamjenjuje?)

2,7 miliona kg) $ endgroup $ & ndash Kevin 26. jun '19 u 18:01

Mogu vam reći zašto, jer sam godinama uključen u projekat. Kada se gusjeničar prevrne preko te riječne stijene, on ga zdrobi i rezultirajuće kretnje drobljenja oslobađaju prašinu silicijevog dioksida u svakom obliku (potpunom, inhalacijskom, i što je najvažnije, udišljivom). Kad se gusjenica otkotrlja, tim tehničara gusjenica prati ga i na tlu i na gusjenici. Studije su pokazale da su ti radnici u prošlosti i sada patili od respiratornih problema zbog silicijum dioksida. Kao rezultat toga, zalijevanje riječnih stijena prije nego što ih gusjeničar zdrobi pokuša je smanjiti ovo oslobađanje prašine silicijevog dioksida.


Gusjeničar - Transporter

KSC ima 2 transportera gusjenica. Svako vozilo sastoji se od četiri gusjenice s dvostrukim gusjenicama, svaka visoka 3 metra (10 stopa) i dugačka 12 metara (41 stopa). Svaka od 8 gusjenica na vozilu sadrži 57 cipela po gusjenicama, a svaka papučica teška je oko, 9 metričkih tona (jedna tona). Kliknite ovdje da vidite kako gusjeničar pomiče šatl.

Gusjeničar/Transporter pokreće 16 vučnih motora s pogonom na četiri generatora od 1.000 kw, pogonjena s dva dizelska motora od 2.750 KS. Dva generatora snage 750 kw, pogonjena s dva dizel motora od 1.065 KS, koriste se za dizanje, upravljanje, osvjetljenje i ventilaciju. Dva generatora snage 150 kw također se koriste za MLP snagu.

Kada su izgrađene, gusjeničari KSC -a bili su najveća gusjeničarska vozila ikad napravljena. (Nadmašio njemački bager Bagger 288). Premještaju mobilnu platformu za lansiranje u zgradu sklopa vozila, a zatim na lansirnu rampu sa sastavljenim svemirskim vozilom. Maksimalna brzina je 1,6 km (jedna milja) na sat opterećenja, otprilike 3,2 km (2 milje) na sat istovara. Vrijeme putovanja Launch Pad -a do VAB -a s platformom Mobile Launch je oko 5 sati. Gusjeničar sagorijeva 568 litara (150 litara) dizel ulja po milji.

Vrh orbitera drži se okomito unutar plus ili minus 10 minuta luka, otprilike promjera košarkaške lopte tokom putovanja. Sistemi za nivelisanje unutar gusjenice održavaju platformu u nivou dok pregovaraju o 5% rampi koja vodi do površine podloge.

Visina gusjenice je podesiva od 6 metara (20 stopa) do 8 metara (26 stopa). Gornja paluba je ravna i kvadratna, veličine otvora za bejzbol, sa strane 27 metara (90 stopa). Dvije upravljačke kabine, jedna na svakom kraju šasije, koriste se za kontrolu svih sistema gusjenica.

Dva transportera gusjeničar KSC-a nakupila su 1.243 milje od 1977. Uključujući godine Apolona, ​​transporteri su prevalili 2.526 milja, otprilike na istoj udaljenosti kao jednosmjerno putovanje od KSC-a do Los Angelesa međudržavnom magistralom ili kružna linija između KSC-a i New York City.


Space Shuttle Crawler - POVIJEST

NASA -inI CENTRI I ODGOVORNOSTI

NASA -in svemirski centar John F. Kennedy na Floridi odgovoran je za sve operacije lansiranja, slijetanja i preokreta za STS misije koje zahtijevaju ekvatorijalne orbite.

Svemirski centar Lyndon B. Johnson u Houstonu u Teksasu odgovoran je za integraciju kompletnog svemirskog broda i centralna je kontrolna točka za misije svemirskih šatlova.

NASA -in Centar za svemirske letove George C. Marshall u Huntsvilleu u američkoj saveznoj državi, odgovoran je za glavne motore svemirskih brodova, vanjske tenkove i čvrste raketne pojačivače.

NASA -in centar za svemirske letove Goddard u Greenbeltu, MD, upravlja svjetskom mrežom stanica za praćenje.

Zračne snage Sjedinjenih Država upravljaju objektom za lansiranje i slijetanje svemirskih šatla u vazduhoplovnoj bazi Vandenberg u Kaliforniji za STS misije koje zahtijevaju polarnu orbitu.

JOHN F. Kennedy Space Center.p> Svemirski centar Kennedy ima primarnu odgovornost za provjeru prije lansiranja, lansiranje, operacije okretanja na zemlji i operacije podrške za svemirski šatl i njegov teret. Opterećenje svemirskim šatlovima obrađuje se u brojnim objektima u KSC -u i obližnjoj zračnoj stanici Cape Canaveral. Korisni teret se instalira u orbitu svemirskog šatla vodoravno u postrojenju za obradu orbitera ili okomito na lansirnoj rampi. Korisni teret koji će se horizontalno instalirati u orbiteru u postrojenju za obradu orbitera provjerava se u Zgradi operacija i plaćanja u KSC -u. Korisni teret instaliran okomito u orbitu na lansirnoj rampi sastoji se prvenstveno od automatiziranih svemirskih letjelica koje uključuju gornje stepene i njihov korisni teret (npr. Sateliti).

Odgovornost KSC -a proteže se na sisteme i planove upravljanja kopnenim operacijama, rasporede obrade, projektovanje objekata i logistiku za podršku sistemu svemirskih šatlova i nosivosti.

Centar je utvrdio zahtjeve za podršku objektima i podršci kopnenim operacijama u vazduhoplovnoj bazi Vandenberg i odredio mjesta za slijetanje u nepredviđenim situacijama. KSC također podržava Ministarstvo odbrane za kopnene operacije u vazduhoplovnoj bazi Vandenberg i tamo održava NASA -ine objekte i opremu za podršku na zemlji.

Objekti za lansiranje-lansirni kompleksi 39-A i 39-B-i baza tehničke podrške industrijskog područja centra isklesani su iz djevičanske savane i močvare početkom 1960-ih za program Apollo.

Prilikom preoblikovanja KSC -a za svemirski šatl, planeri su maksimalno iskoristili postojeće zgrade i građevine iz programa Apollo koje se mogu mijenjati, zakazujući nove samo kada postoji jedinstveni zahtjev. Novi objekti koji su izgrađeni za podršku operacijama svemirskih šatlova su objekat za slijetanje (uzletno -sletna staza) Postrojenje za preradu orbitera, a od nedavno i Objekat za izmjenu i obnovu orbitera, Postrojenje za obradu pločica, Pogon za skladištenje i preradu čvrstih raketa, Zgrada logistike šatla i Čvrsta raketa Postrojenje za montažu i obnovu.

KSC se nalazi na 28,5 stepeni sjeverne geografske širine i 80,5 stepeni zapadne geografske dužine. Obuhvata približno 140.000 jutara zemlje i vode. Ovo područje, sa susjednim vodnim tijelima, dovoljno je da omogući odgovarajuću sigurnost okolnim zajednicama tokom lansiranja svemirskih brodova i aktivnosti slijetanja.

Izvođač radova na preradi šatla obavlja sve aktivnosti obrade lansiranja i preokreta u svemirskom centru Kennedy.i u vazduhoplovnoj bazi Vandenberg. Kompanija Lockheed Space Operations, Titusville, Florida, dobila je ugovor 1983. godine za izvođenje operacija obrade lansiranja svemirskih brodova koje je prethodno izvodilo više od desetak zasebnih izvođača, među kojima su bili i veliki proizvođači hardvera.

SPC je odgovoran za obradu pojedinih elemenata vozila, integraciju tih elemenata u pripremu za lansiranje, obavljanje aktivnosti integracije i validacije tereta s orbitom, upravljanje i održavanje dodijeljenih objekata i potrebne opreme za podršku te izvršavanje onih zadataka koji su potrebni za uspješno obavljanje aktivnosti lansiranja i lansiranja.

    Nakon što stignu u svemirski centar Kennedy. svemirski šatl orbiti se obrađuju između misija u strukturi analognoj sofisticiranom hangaru-Orbiter Processing Facility. OPF može paralelno rukovati s dva orbita. Nalazi se u blizini zapadne strane zgrade sklopa vozila kako bi se smanjila udaljenost vuče orbitera dok se proces obrade nastavlja.

OPF ima dvije identične uvale dužine 197 stopa, širine 150 stopa i visine 95 stopa, površine 29 000 četvornih metara i opremljene su s dvije mostovne dizalice od 30 tona s visinom kuke otprilike 66 stopa. Niski zaljev koji razdvaja dvije uvale dugačak je 233 stope, širok 97 stopa i visok 24,6 stopa. Aneks od 10.000 kvadratnih metara nalazi se na sjevernoj strani objekta. Još jedan novi trokatni aneks od 34.000 kvadratnih metara pružit će dodatni poslovni prostor.

U visokim utorima, sistem rovova ispod poda sadrži električne, elektroničke, komunikacijske, instrumentacijske i kontrolne kablove za hidraulično opskrbu i povrat vodovodnih plinovitih dušika, kisika i helija te vodovod za distribuciju komprimiranog zraka. Plinoviti dušik, helij i komprimirani zrak isporučuju se iz sistema u zgradi za montažu vozila. Svi ovi sistemi se koriste za podršku obradi i održavanju orbita tokom operacija okretanja na zemlji.

Dva visoka uvala imaju hitni ispušni sistem u slučaju hipergoličnog izlijevanja. U niskom zaljevu nalaze se prostori za elektroničku opremu, sučelje sistema za obradu lansiranja, trgovine mehaničke i električne opreme i popravak sistema toplinske zaštite. Niski zaljev također uključuje odredbe za komunikacijsku sobu, urede i nadzorne kontrolne sobe.

Neke aktivnosti obrade orbita u OPF-u su opasne, a osoblje koje je direktno uključeno mora nositi zaštitna odijela, koja se nazivaju samostalni zaštitni kompleti za atmosferu. Korištenje odijela SCAPE potrebno je tijekom operacija koje uključuju sistem za kontrolu reakcije, sistem za orbitalno manevriranje i pomoćne pogonske jedinice i njihova hipergolična goriva.

Sistemi zaštite od požara dostupni su u sve tri uvale.

Dva velika mosta za kotrljanje protežu se preko glavnog pristupnog mosta kako bi se omogućio potpuni pristup instaliranom korisnom teretu, radijatorima, unutrašnjim dijelovima ležišta za korisni teret i vanjskim dijelovima vrata ležišta za korisni teret. Svaki od mostova za kotrljanje podržava dva nezavisno pomična kamiona sa kantom za osoblje na dnu svake vertikalno teleskopske ruke. Žlice se ručno rotiraju oko cijelog kruga. Mostovi, kamioni i teleskopske ruke imaju električni pogon i njima se upravlja iz kanti ili sa piste.

Preklopne radne platforme paralelne su sa prostorom za utovarni teret kako bi se omogućio pristup radijatorima, unutrašnjim vratima ležišta za teret, šarkama vrata ležišta za teret i tačkama nosača.

Druge platforme omogućuju pristup drugim elementima orbite.

Šarke vrata ležišta za teret nisu dizajnirane da izdrže težinu vrata dok su otvorena vodoravno u Zemljinoj okolini od 1 g. Protuteža uređaj nulte gravitacije podržava težinu vrata dok su otvorena za obradu u OPF-u.

Tok obrade orbitera počinje kada orbiter sleti na mjesto slijetanja šatla nakon misije u svemiru ili leta trajekta na avionu -nosaču šatla. U oba slučaja, orbiter se vuče do OPF -a u roku od nekoliko sati od dolaska.

Pristup modulu posade uspostavljen je ubrzo nakon što je orbiter sletio. U to vrijeme uklanja se oprema letačke posade, zajedno sa svim eksperimentima na srednjoj palubi koji su letjeli na misiji.

Obrada započinje kada se orbiter podigne sa stajnog trapa i izravna, radna mjesta se premjeste u položaj i pripreme počnu pristupiti različitim područjima orbitera. Orbiter je spojen na uzemljenje, rashladnu tekućinu u tlu objekta, zrak za pročišćavanje i LPS.

Početne operacije zaštite uključuju spajanje cijevi za čišćenje, odzračivanje i odvod. Bilo koja neiskorištena pirotehnika (uređaji za naoružanje), poput one koja se koristi za aktiviranje rezervnog stajnog trapa, onemogućena je i zaštićena. Pokreće se čišćenje i napuštanje orbitalnog orbitalnog sistema za manevrisanje/sistema za upravljanje reakcijom, sistema za upravljanje reakcijama naprijed i hipergoličnih sistema pomoćnih pogonskih jedinica.

Neke od ovih opasnih operacija zahtijevaju da OPF bude očišćen od sveg nebitnog osoblja. Hipergolične operacije zasluživanja zahtijevaju da osoblje nosi odijela SCAPE.

Hipergolične linije OMS/RCS -a i naprednog RCS -a isušene su iz zarobljenih pogonskih goriva i njihove interfejs veze su pročišćene. Zaostala hipergolična goriva u spremnicima se obično ne ispuštaju.

Kada je potrebno, OMS/RCS mahune i prednji RCS se uklanjaju i odvode u Hipergolično postrojenje za održavanje i blagajnu u industrijskom području radi održavanja.

Nakon što je orbiter ubačen u OPF, započinje čišćenje glavnih motora svemirskih brodova radi uklanjanja vlage nastale kao nusprodukt izgaranja tekućeg kisika i tekućeg vodika.

Kriogeni spremnici gorivih ćelija ispuštaju se iz zaostalih reaktanata i postaju inertni pomoću plinovitog dušika u sistemu kisika i plinovitog helija u vodikovom sistemu. Plinovi visokog pritiska ispuštaju se iz sistema za kontrolu okoliša i sistema za održavanje života.

Prije nego što se napuštanje leta mora nastaviti nakon početnih operacija sigurnosti, određeni sistemi vozila moraju biti mehanički osigurani i instaliran pristup osoblja.

Postavljene su glavne gumijaste brave i poklopci motora svemirskog šatla, a toplotni štitnici motora su uklonjeni. Ulazna pristupna vrata se uklanjaju, a radni stolovi se ugrađuju u zadnji odjeljak orbitera.

Vrata ležišta korisnog tereta su otvorena, a pristupne odredbe su instalirane za podršku operacijama korisnog tereta. Svi opasni korisni tereti također su zaštićeni tokom ovih ranih operacija OPF -a.

Korisni teret i pripadajuća pomoćna oprema u zraku iz prethodnog leta uklanjaju se iz orbiterskog prostora za teret, a ležište se priprema za ugradnju novih tereta. Sistemska ruka daljinskog upravljača se uklanja ili instalira, što je potrebno za sljedeću misiju.

Tijekom rutinskih operacija napuštanja, potrošni materijal koji se ne može skladištiti istovaruje se iz orbite, a otpadni proizvodi se uklanjaju. Pitka voda, voda iz kotlova za raspršivanje vode i ulje za podmazivanje iz pomoćnih pogonskih jedinica se ispuštaju, a filteri ulja za podmazivanje APU se uklanjaju.

Nakon što je početno sigurnosno dovršavanje završeno, započinje rješavanje problema nakon leta koji su nastali prilikom lansiranja, leta ili ponovnog ulaska.

Komponente orbitera se uklanjaju i popravljaju ili zamjenjuju prema potrebi na osnovu pregleda anomalija, a zatim se ponovo testiraju paralelno s drugim aktivnostima obrade.

Vizuelno se pregledavaju sistem termičke zaštite orbitera, odabrani elementi konstrukcije, stajni trap, gume i drugi sistemi kako bi se utvrdilo da li su pretrpjeli ikakva oštećenja tokom leta i slijetanja.

Sva oštećenja na sistemu toplinske zaštite moraju se popraviti prije sljedeće misije. TPS operacije se izvode paralelno sa većinom aktivnosti u Orbiter Processing Facility. Na vanjskoj strani svakog orbitera nalazi se oko 27.446 pločica i termo pokrivača, a na unutrašnjosti oko 6.000 pokrivača za termičku kontrolu.

Održavanje TPS -a je omogućeno u novom objektu sistema toplotne zaštite preko puta OPF -a. Objekat od 33.000 kvadratnih metara bio je smješten u blizini OPF-a kako bi se smanjilo vrijeme potrebno za transport pločica i pokrivača sistema za termičku kontrolu između dva objekta. Potrebno je nekoliko putovanja prije nego što se pločice i neke deke postave na orbiter. Očekuje se i da će blizina objekata smanjiti oštećenja osjetljivih pločica.

Tijekom obrade OPF -a izvode se sve potrebne izmjene vozila, osim rutinskog zasluživanja/servisiranja i odjave nakon leta. Planirane izmjene obično se pokreću čim je praktično nakon povratka orbitera i završavaju se paralelno s servisiranjem prije pokretanja kad god je to moguće.

Modifikacije se mogu izvršiti kako bi se ispunili budući zahtjevi misije, riješio identificirani nedostatak ili poboljšale performanse vozila zamjenom postojećeg hardvera novim, poboljšanim dizajnom.

Preinake orbitera, ako su opsežne, mogu se izvesti sa isključenim vozilom. Mnoge se izmjene, međutim, mogu dovršiti paralelno s rutinskim servisiranjem dok je orbiter uključen.

Gdje je to moguće, radovi na izmjenama dovršavaju se u OPF -u i Orbiter postrojenju za izmjenu i obnovu dok je orbiter u vodoravnom položaju. Iako se neki radovi na izmjenama mogu izvesti u zgradi sklopa vozila ili na podlozi ako je potrebno, OPF i OMRF nude najbolju opremu za pristup i podršku za obavljanje takvih radova.

Osim za vrijeme opasnih operacija, rutinsko servisiranje prije leta može započeti dok su zaslužne aktivnosti još u toku ili su u toku izmjene. Rutinsko servisiranje uključuje rekonfiguriranje orbitalnih sistema za let, izvođenje rutinskog održavanja, zamjenu dijelova i instaliranje novih kompleta letova i korisnog tereta. Na brod se ukrcavaju potrošne tekućine i plinovi, a servisira se sustav APU ulja za podmazivanje.

Po završetku servisiranja sistema, provode se funkcionalne provjere radi provjere spremnosti za let prije zatvaranja. Svaki sistem koji ne uspije provjeriti funkcionalnost podvrgava se rješavanju problema radi identifikacije problema. Ako je potrebno, izvode se naknadni popravci ili zamjene.

Hidraulički aktivirane površine kontrole leta orbitera temeljito su provjerene.

Novi korisni teret može se instalirati u OPF prije integracije shuttle vozila ili na lansirnu rampu nakon integracije shuttlea. Ovisno o određenoj misiji, novi korisni tereti mogli bi se instalirati na obje lokacije. Ako su korisni tereti instalirani u OPF-u, sučelja orbiter-to-payload se provjeravaju prije nego se orbiter premjesti u VAB.

Tokom protoka OPF -a vrši se ispitivanje interfejsa opreme posade kako bi se identifikovali svi problemi povezani sa opremom letačke posade.

Nakon svih radova glavnog motora svemirskog šatla, glavni pogonski sistem orbitera, uključujući tri glavna motora, prolazi provjeru curenja s potpisom helija. Uspješan završetak ovog testa općenito otvara put zatvaranju krmenog prostora motora.

Pirotehnička sredstva koja se pokreću električnim putem (ubojna sredstva) potrebna za orbiterske sisteme su instalirana i provjerena. To uključuje male eksplozivne naboje poput onih koji se koriste za rezervno raspoređivanje stajnog trapa orbitera ili hitni ispad daljinskog upravljačkog sistema, antenu Ku-opsega, bočni otvor i sekundarni izlaz za hitne slučajeve.

Po završetku svih aktivnosti instaliranja korisnog tereta ili bilo kojeg drugog posla koji se izvodi u ležištu korisnog tereta, vrata ležišta korisnog tereta u obliku školjke zatvaraju se i zaključavaju. Ako se na podlogu ne smiju instalirati korisni tereti, to predstavlja konačno zatvaranje orbitera u sredini.

Posljednji zadaci koje treba obaviti u OPF -u prije nego što se orbiter premjesti u zgradu sklopa vozila su vaganje orbitera i određivanje njegovog težišta. Na performanse vozila utječu i težina i težište, a programiranje leta zahtijeva precizno određivanje oba parametra.

Zatim se uklanjaju sva oprema za podršku na zemlji i pristup, a orbiter se vuče u prolaz zgrade za montažu vozila kroz velika vrata na sjevernom kraju visokog zaljeva.

    OMRF je dizajniran kao treći zaljev u kojem se mogu pregledati orbiti svemirskih šatla, izvršiti popravni radovi i vanmrežne izmjene, a orbitirati se mogu pohraniti. Nalazi se sjeverno od postrojenja za obradu orbitera.

OMRF -ov visoki zaljev dugačak je 197 stopa, širok 150 stopa i visok 95 stopa, isto kao i dva ležišta OPF -a. Električne, mehaničke i komunikacijske kontrolne sobe objekta nalaze se u susjednom ležištu za podršku. Tu je kancelarijski prostor za osoblje i konferencijska sala sa prozorom koji gleda na odeljak za obradu.

U OMRF-u će se izvoditi samo neopasni radovi sve dok nisu prikladno opremljeni kao OPF za rukovanje opasnim operacijama. U međuvremenu, radovi na orbitu uključuju većinu operacija sustava toplinske zaštite, ponovnu hidroizolaciju sustava toplinske zaštite, izmjene koje objekt može podržati i općenito održavanje.

Buduće nadogradnje objekta omogućit će sigurnu zaštitu i zasluženo ograničeno uključivanje orbitera pomoću mobilnog električnog uzemljenja za opsluživanje orbitera iz sistema za skladištenje i distribuciju reaktanata, izbacivanje snimača letenja orbitera, što zahtijeva podršku računara Launch Control Center koji servisiraju orbitera Sistemi petlje rashladne tečnosti freona i druga ispitivanja koja zahtijevaju podršku Centra za pokretanje.

    Logistički objekat je zgrada od 324.640 kvadratnih metara koja se nalazi južno od zgrade za montažu vozila. U njemu se nalazi 190.000 hardverskih dijelova svemirskih brodova, a tamo radi oko 500 NASA -inog osoblja i izvođača radova. Najneobičnija karakteristika Logističkog pogona je njegov najsavremeniji sistem za preuzimanje dijelova, koji uključuje automatiziranu opremu za rukovanje radi pronalaženja i preuzimanja određenih dijelova svemirskih brodova.
    Zgrada za montažu vozila, izgrađena za vertikalnu montažu raketa -nosača Saturn, srce je lansirnog kompleksa 39 i modifikovana je tako da podržava montažu svemirskog šatla.

Jedna od najvećih zgrada na svijetu, VAB pokriva 8 hektara i ima zapreminu od 129.428.000 kubnih stopa. Visok je 525 stopa, dugačak 715 stopa i širok 518 stopa. Zgrada je podijeljena na zaljev visok 525 stopa i niski zaljev visok 210 stopa. Prijenosni prolaz koji vodi sjeverno i južno povezuje i presijeca dva uvala, omogućavajući lako kretanje elemenata vozila.

Visoki zaljev podijeljen je u četiri zasebne uvale. Dva na zapadnoj strani konstrukcije-ležišta 2 i 4-koriste se za skladištenje vanjskih tenkova orbitera svemirskih letjelica. Dva odeljka okrenuta prema istoku-ležišta 1 i 3-koriste se za vertikalnu montažu svemirskih brodova na platformi pokretnih lansera.

Proširive platforme, modificirane tako da odgovaraju konfiguraciji svemirskog šatla, kreću se po vozilu kako bi omogućile pristup za integraciju i konačno testiranje. When checkout is complete, the platforms move back, and the VAB doors are opened to permit the crawler-transporter to move the mobile launcher platform and assembled space shuttle vehicle to the launch pad. The high bay door is 456 feet high. It is divided into lower and upper sections. The lower door is 152 feet wide and 114 feet high with four door leaves that move horizontally. The upper door is 342 feet high and 76 feet wide with seven door leaves that move vertically.

The low bay was the initial site for refurbishment and subassembly of solid rocket booster segments. These activities now occur at a new facility north of the VAB.

Existing pneumatic, environmental control, light and water systems have been modified in both bays. The north doors to the VAB transfer aisle have also been widened 40 feet to permit the orbiter to enter when it is towed over from the Orbiter Processing Facility. The doors are slotted at the center to accommodate the orbiter's vertical stabilizer.

The Vehicle Assembly Building has more than 70 lifting devices, including two 250-ton bridge cranes.

The VAB is designed to withstand winds of up to 125 miles per hour. Its foundation rests on more than 4,200 open- end steel pilings 16 inches in diameter driven down 160 feet to bedrock.

    The external tank is transported to the Kennedy Space Center.by barge from Martin Marietta's Michoud assembly facility at New Orleans, La. On arrival at the space center, the tank and the associated hardware are off-loaded at the barge turn basin. The external tank is transported horizontally to the Vehicle Assembly Building on a wheeled transporter and is transferred to a vertical storage or checkout cell. High Bays 2 and 4 each contain one external tank storage and one checkout cell.

The storage cells provide only the minimum access and equipment required to secure the external tank in position. After the tank is transferred to the checkout cell, permanent and mobile platforms are positioned to provide access to inspect the tank for possible damage during transit and to remove hoisting equipment. The liquid oxygen and liquid hydrogen tanks are then sampled and receive a blanket pressure of gaseous nitrogen and gaseous helium, respectively, in preparation for a normal checkout.

The external tank subsystem checkout includes an inspection of the external insulation and connection of ground support equipment (including the launch processing system) to the appropriate interfaces. Electrical, instrumentation and mechanical function checks and tank and line leak checks are performed in parallel.

After satisfactory checkout of the external tank subsystems, ground support equipment and launch processing system equipment are removed and stored, and external tank closeout is initiated. Forward hoisting equipment is attached and work platforms are stored-or opened-in preparation for transferring the tank to the mobile launcher platform.

The external tank is hoisted vertically from the checkout cell by the 250-ton high bay crane and transferred to the mobile launcher platform in High Bay 1 or 3 for mating with the already-assembled solid rocket boosters. After the external tank and solid rocket booster are mated, the integration cell ground support equipment is connected, and intertank work platforms are installed.

A considerable amount of final closeout work is performed on the boosters and the tank after they are mated.

    The space shuttle main engine workshop is located in the Vehicle Assembly Building in a low bay checkout cell that was converted into an enclosed, environmentally controlled engine workshop. The workshop serves as a receiving and inspection facility for SSMEs and as a support facility for all SSME operations at Kennedy.

Three engine workstands are available to support major stand-alone engine work, if required. The facility can support main engine disassembly and reassembly, checkout and leak testing.

Engines, mounted on engine handling devices and protected by a cylindrical shipping cover, arrive by truck from NASA's National Space Technology Laboratories and are off-loaded in the VAB transfer aisle next to the engine workshop. The engines are then pulled into the workshop and undergo receiving inspections. Normally, newly delivered engines are transferred to an engine installer and transported to the Orbiter Processing Facility for installation.

Routine postflight deservicing of the engines is performed in the OPF with the engines in place aboard the orbiter. More extensive between-flight servicing can be performed in the main engine workshop. The shop also supports engine removal operations and the preparation of engines for shipment back to NSTL or Rocketdyne in Canoga Park, Calif., the manufacturer of the SSMEs.

The shop provides storage for test equipment and serves as a staging area for SSME operations performed in the OPF and VAB and at the launch pad.

    The solid rocket motor segments and associated hardware are shipped to the Kennedy Space Center.by rail from the contractor's facility in Utah. The segments are transported horizontally and have transportation covers. End rings provide segment handling points, environmental protection, and protection of the solid-grain propellant and the outer edge of each segment from potential impact damage.

When they arrive at KSC, the segments are delivered to the solid rocket motor Rotation, Processing and Surge Facility, a group of steel-framed structures designed to withstand hurricane-force winds.

The RPSF, located north of the Vehicle Assembly Building, comprises a processing facility, a support building and two segment surge (storage) buildings. The facilities isolate hazardous operations associated with solid rocket motor rotation and processing (formerly performed in High Bay 4 of the VAB) and avert impacts to VAB launch-support capabilities.

The rotation building is 98.6 feet high and has an area of 18,800 square feet.

The main facility in the complex is used for solid rocket motor receiving, rotation and inspection and supports aft booster buildup. Rail tracks within the building permit railroad cars containing the segments to be positioned directly under one of the two 200-ton overhead bridge cranes. A tug vehicle capable of pulling and stopping a fully loaded segment car moves and positions railcars in the building.

Recovered booster segments are loaded onto railcars for shipment back to the manufacturer at a site on Contractor Road.

Two surge buildings located nearby contain 6,000 square feet each of floor area for storage of eight segments (one flight set). The buildings are 61 feet in height in the aft segment storage area and 43 feet in the forward and center segment storage area.

Paved roads between the processing facility, the two storage buildings and the VAB permit transporters to transfer the segments and other hardware from one facility to another.

Live solid rocket motor segments arrive at the processing facility and are positioned under one of the cranes. Handling slings are then attached to the railcar cover, and it is removed. The segment is inspected while it remains in the horizontal position.

The two overhead cranes hoist the segment, rotate it to the vertical position and place it on a fixed stand. The aft handling ring is then removed. The segment is hoisted again and lowered onto a transportation and storage pallet, and the forward handling ring is removed to allow inspections. It is then transported to one of the surge buildings and temporarily stored until it is needed for booster stacking in the VAB.

In 1986, a new Solid Rocket Booster Assembly and Refurbishment Facility was constructed at KSC after recompetition of the Marshall Space Flight Center's booster assembly contract.

Solid rocket booster operations are performed by both the shuttle processing contractor and the booster assembly contractor, who is responsible for booster disassembly and refurbishment and the assembly and checkout of forward and aft skirt subassemblies in the VAB. Booster retrieval operations, parachute refurbishment and booster stacking activities, in addition to integrated checkout, are performed by the shuttle processing contractor.

Refurbishment and subassembly operations previously performed in the VAB low bay and other outlying facilities are now conducted in the new facility located south of the VAB.

Aft skirts, fully configured and checked out in the Solid Rocket Booster Assembly and Refurbishment Facility, are delivered to the RPSF on dollies and hoisted into position on workstands. An inspected aft segment is then hoisted into position for mating with the aft skirt. When the aft segment assembly is completed and transferred to a pallet, it is transported directly to the VAB or to one of the two storage buildings.

Solid rocket booster elements, such as forward skirts, aft skirts, frustums, nose caps, recovery systems, electronics and instrumentation components, and elements of the thrust vector control system are received in this facility.

Assembly and checkout of the forward assembly (nose cap, frustum and forward skirt) and aft skirt assembly are also performed here in addition to refurbishment of recovered booster flight hardware.

The structural assemblies and components required to build up the forward assembly, aft skirt and external tank attach hardware are either shipped to KSC new or refurbished on site.

When completed, the aft skirt assemblies are transferred to the RPSF for assembly with the aft solid rocket motor segments.

An SRB hydraulic power unit ''hot fire'' facility is located in the southeast corner of the 44-acre site. The facility features a test stand that supports the hot-firing of the solid rocket booster's hydrazine-fueled thrust vector control system. Before each flight, the solid rocket booster aft skirt assemblies containing the TVC are transported to the facility and test-fired before the aft booster buildup.

The stacking of the solid rocket booster major assemblies begins after the buildup of aft booster assemblies at the Solid Rocket Motor Processing Facility (north of the VAB) and checkout of the forward nose skirt assemblies in the Solid Rocket Booster Assembly and Refurbishment Facility.

The booster stacking operation is accomplished in the following sequence:

1. The aft booster assemblies are transferred from the buildup area in the Rotation, Processing and Surge Facility to the High Bay 1 or 3 integration cells in the VAB and attached to the mobile launcher platform support posts.

2. Continuing serially, the aft, aft center, forward center and forward rocket motor segments are stacked to form complete solid rocket motor assemblies. As each segment is mated, the joint seal is inspected visually.

3. Segment seal integrity is then demonstrated by a leak check and decay test between the redundant seals. The forward skirt/nose assemblies are transferred from the SRB ARF to the High Bay 1 or 3 integration cell and stacked atop the completed solid rocket motor assemblies to form a complete set of boosters.

An alignment check of the complete flight set of solid rocket booster assemblies is performed after the stacking operations are completed. Integrated and automated systems testing of the assembled solid rocket boosters is accomplished on the mobile launcher platform, using the launch processing system to simulate the external tank and orbiter.

Before the space shuttle vehicle is transferred to the launch pad, solid rocket booster flight batteries are installed. Final connection of the solid rocket booster pyrotechnic systems is performed at the launch pad.

The solid rocket booster's hydraulic power units are serviced with hydrazine during the prelaunch propellant-servicing operations at the launch pad.

    The Hypergolic Maintenance and Checkout Facility consists of three buildings in an isolated section of the KSC industrial area approximately eight miles southeast of the Vehicle Assembly Building. This area provides all facilities required to process and store the hypergolic-fueled modules that make up the orbiter's reaction control system, orbital maneuvering system and auxiliary power units.
    The orbiter is towed from the Orbiter Processing Facility into the transfer aisle of the Vehicle Assembly Building through the north door. When the orbiter is in position, the lifting beams are installed, and the erection slings are attached. The orbiter is then lifted, and the landing gear is retracted. The orbiter is rotated from the horizontal to the vertical position using the 250- and 175-ton cranes. It is then transferred to the space shuttle assembly area in High Bay 1 or 3 and lowered and mated to the external tank, which is already mated with the solid rocket boosters on the mobile launcher platform. After mating is completed, the erection slings and load beams are removed from the orbiter, and the platforms and stands are positioned for orbiter/external tank/solid rocket booster access. The orbiter is mated with its fin toward the transfer aisle (toward the south at the pad).
    After the orbiter has been mated to the external tank/solid rocket booster assembly and all umbilicals have been connected, an electrical and mechanical verification of the mated interfaces is performed to verify all critical vehicle connections. A shuttle interface test is performed using the launch processing system to verify space shuttle vehicle interfaces and space shuttle vehicle-to-ground interfaces. The launch processing system is used to control and monitor orbiter systems as required in the Vehicle Assembly Building. After interface testing is completed, ordnance devices are installed, but not electrically connected. Final ordnance connection and flight closeout is completed at the pad.

Almost complete external access to the shuttle vehicle is provided in the Vehicle Assembly Building. Access to the payload bay is through the crew compartment since the payload bay doors cannot be opened in the Vehicle Assembly Building.

    The mobile launcher platforms are the movable launch bases for the space shuttle. Two platforms are in operational use and a third is being modified for future use. The platforms were used for the Saturn/Apollo missions and were modified for the space shuttle.

The mobile launcher platform is a two-story steel structure 25 feet high, 160 feet long and 135 feet wide. It is constructed of welded steel up to 6 inches thick. At their park site north of the Vehicle Assembly Building, in the Vehicle Assembly Building high bays and at the launch pad, the mobile launcher platforms rest on six 22-foot- tall pedestals.

Three openings are provided in the mobile launcher platform-two for solid rocket booster exhaust and one for space shuttle main engine exhaust. The solid rocket booster exhaust holes are 42 feet long and 20 feet wide. The space shuttle main engine exhaust opening is 34 feet long and 31 feet wide.

Inside the platform are two levels with rooms and compartments housing launch processing system hardware interface modules, system test sets, propellant-loading equipment and electrical equipment racks.

Unloaded, the mobile launcher platform weighs 8.23 million pounds. The total weight with an unfueled space shuttle aboard is 11 million pounds.

The space shuttle vehicle is supported and restrained on the mobile launcher platform during assembly, transit and pad checkout by the solid rocket booster support/hold-down system. Four conical hollow supports for each booster are located in each solid rocket booster exhaust well. The supports are 5 feet high and have a base diameter of 4 feet.

Posts on the aft skirts of the SRBs rest on spherical bearings atop the mobile launcher platform hold-down posts. A 28-inch-long, 3.5-inch-diameter stud passes vertically through the SRB post, spherical bearing and hold-down post casting to secure the booster to the platform. A frangible, or explosive, nut at the top of the stud and a nut at the bottom are tightened to preload the stud to a tension of up to 850,000 pounds.

When full main engine thrust is developed during the final moments of the launch countdown, ignition signals are sent to the two SRBs. Simultaneously, the explosive nuts at the tops of the studs are triggered. The preloaded studs are expelled downward into deceleration stands (''sandbuckets'') and the fractured halves of the explosive nuts are contained within spherical, 10-inch-diameter debris catchers on top of the solid rocket booster aft skirt posts. This sequence releases the solid rocket boosters and the entire space shuttle vehicle for flight.

Two tail service masts, one located on each side of the space shuttle main engine exhaust hole, support the fluid, gas and electrical requirements of the orbiter's liquid oxygen and liquid hydrogen aft T-0 umbilicals. The TSM assembly also protects the ground half of those umbilicals from the harsh launch environment. At launch, the solid rocket booster ignition command fires an explosive link, allowing a 20,000-pound counterweight to fall, pulling the ground half of the umbilicals away from the space shuttle vehicle and causing the mast to rotate into a blastproof structure. As it rotates backward, the mast triggers a compressed-gas thruster, causing a protective hood to move into place and completely seal the structure from the main engine exhaust.

Each TSM assembly rises 31 feet above the mobile launcher's deck, is 15 feet long with umbilical retracted, and is 9 feet wide. The umbilical carrier plates retracted at launch are 6 feet high, 4 feet wide and 8 inches thick, or about the size of a thick door.

The liquid oxygen umbilical runs through the TSM on the east side of the mobile launcher, and the liquid hydrogen umbilical runs through the TSM on the west.

Gaseous hydrogen, oxygen, helium and nitrogen ground and flight system coolants ground electrical power and ground-to-vehicle data and communications also flow through the TSM umbilical links.

Work platforms used in conjunction with the mobile launcher platform provide access to the space shuttle main engine nozzles and the solid rocket boosters after they are erected in the Vehicle Assembly Building or while the space shuttle is undergoing checkout at the pad.

The main engine service platform is positioned beneath the mobile launcher platform and raised by a winch mechanism through the exhaust hole to a position directly beneath the three engines. An elevator platform with a cutout may then be extended upward around the engine bells. The orbiter engine service platform is 34 feet long and 31 feet wide. Its retracted height is 12 feet, and the extended height is 18 feet. It weighs 60,000 pounds.

Two solid rocket booster service platforms provide access to the nozzles after the vehicle has been erected on the mobile launcher platform. The platforms are raised from storage beneath the mobile launcher into the solid rocket booster exhaust holes and hung from brackets by a turnbuckle arrangement. The solid rocket booster platforms are 4 feet high, 20 feet long and 20 feet wide. Each weighs 10,000 pounds.

The orbiter and solid rocket booster service platforms are moved down the pad ramp to a position outside the exhaust area before launch.

    Tracked crawler-transporter vehicles move the space shuttle vehicles between the Vehicle Assembly Building and Launch Complex 39-A or 39-B. The two transporters are 131 feet long and 114 feet wide. They move on four double-tracked crawlers, each 10 feet high and 41 feet long. Each shoe on th crawler track weighs 2,000 pounds. The transporter's maximum speed unloaded is 2 mph loaded, it is 1 mph. Unloaded, it weighs 6 million pounds.

The transporters have a leveling system designed to keep the top of the space shuttle vehicle vertical within plus or minus 10 minutes of arc-about the dimensions of a basketball. This system also provides the leveling operations required to negotiate the 5-percent ramp leading to the launch pads and to keep the load level when it is raised and lowered on pedestals at the pad and in the Vehicle Assembly Building.

The overall height of the transporter is 20 feet, from ground level to the top deck, on which the mobile launcher platform is mated for transportation. The deck is flat and about the size of a baseball diamond (90 feet square).

Each transporter is powered by two 2,750-horsepower diesel engines. The engines drive four 1,000-kilowatt generators that provide electrical power to 16 traction motors. Through gears, the traction motors turn the four double-tracked crawlers spaced 90 feet apart at each corner of the transporter.

North of the Orbiter Processing Facility is a weather-protected crawler-transporter maintenance facility in which components of the crawler-transporters can be repaired or modified. It includes a high bay with an overhead crane for lifting heavy components and a low bay for shops, parts storage and offices. A pit has been built outside on the crawlerway to accommodate track segment removal and installation.

The crawler-transporters move on a roadway 130 feet wide, almost as broad as an eight-lane turnpike. The crawlerway from the VAB to the launch pads consists of two 40-foot-wide lanes separated by a 50-foot-wide median strip. The distance from the Vehicle Assembly Building to Launch Complex 39-A is 3.4 miles and 4.2 miles to Launch Complex 39-B. The roadway is built in three layers with an average depth of 7 feet. The top surface is river gravel. The gravel is 8 inches thick on curves and 4 inches on straightaway sections.

When the space shuttle vehicle is fully assembled and checked out in the VAB, the crawler-transporter is driven into position beneath the mobile launcher platform. The transporter jacks the mobile launcher off its pedestals, and the rollout to the launch pad begins. It takes approximately five hours for the unusual transport vehicle to make the trip from the VAB to the launch pad. During the transfer, engineers and technicians aboard th crawler, assisted by ground crews, operate and monitor systems while drivers steer the vehicle towards its destination.

After the mobile launcher platform is ''hard down'' on the launch pad pedestals, th crawler is backed down the ramp and returned to its parking area.


Space Shuttle Crawler - HISTORY

Terex Crawler Lifts Space Shuttle Discovery Into History

Space Shuttle Discovery, the most traveled shuttle in NASA’s fleet, ended its voyage at Washington Dulles International Airport this spring after more than 150 million miles of airtime. Its final flight took place April 17, 2012, on top of a Boeing 747 Shuttle Aircraft Carrier, where it was slated to replace the Space Shuttle Enterprise at the Smithsonian Institution’s James S. McDonnell Space Hangar at the Steven F. Udvar-Hazy Center. Before being towed from Dulles to its final exhibit place, Discovery had to be hoisted from its carrier and its landing gear lowered into place one final time, which happened with help from a Terex CC2800-1 crawler crane and South Kearny, N.J.-based J.F. Lomma Inc.’s crane and rigging team.

Lomma and the United Space Alliance work crews methodically hoisted the 196,400-pound shuttle off of the 747 Shuttle Aircraft Carrier (SAC). “You cannot describe what it’s like to be part of space shuttle history,” said Frank Signorelli, crane and rigging manager for J. F. Lomma, Inc. Josh Barnett, field service representative for Terex Cranes, who was on site to support Lomma on the lift, added, “It was a one-of-a-kind experience.”

For Lomma, planning for this job started nearly two years ago when company officials first considered bidding for the job. NASA was very specific in what equipment was required for the work. “The bid called specifically for the Terex CC 2800-1 as the primary crane to do the pick as well as all of the other supporting cranes and equipment,” Signorelli said.

Part of the reason for this lies with NASA’s experience with this crane model for a similar pick decades ago. When the 747 SAC transports the space shuttle to a place other than a space center, there is a need for crane and rigging equipment. “These picks do not happen often, since NASA already has a shuttle removal method in place at each space center,” Barnett explained.

In the early 1990s, NASA had the rare need to hoist a shuttle from the 747 SAC, and a Terex legacy brand was selected for the job. “A Demag 2800 crawler crane was used in that project as the primary crane,” mentions Jim Creek, Terex Cranes’ senior product manager for crawler cranes – North America. “NASA has a history of successful lifts with this crane.”

The Terex crane for this job, the CC 2800-1, offers a 660-ton capacity at a 32.8-foot radius, more than enough to handle Discovery’s weight. It features a maximum 196.9-foot main boom length and a variable 100-foot radius Superlift attachment to boost lift capacities. “Superlift offers an additional 4,000 to 600,000 lb (1,814 to 272,155 kg) of counterweight on the tray, which enables the crane to lift more weight further from the crane’s base,” said Creek.

The shuttle project consisted of not one but two shuttle hoists. The first lifted the Space Shuttle Discovery off of the 747 SAC for the shuttle’s eventual spot at the Smithsonian. The second loaded the Space Shuttle Enterprise onto the carrier, so it could be flown to John F. Kennedy International Airport in New York.

It took Lomma nearly three months to prepare for and arrange the pick. “We had conference calls with NASA two times a week,” Signorelli said. “Communication was often and thorough between our company and NASA.”

Lomma purchased the CC 2800-1 two years ago. It was on rent with a customer in Quebec. Upon returning to the yard, the crane was rigged to make sure the right components were in place for the job. “We ran the crane in our yard,” Signorelli said. “The (IC-1) computer screen is extremely user friendly and self-explanatory. It’s not a complicated crane to operate.”

Upon completing the dry run at the yard, Lomma disassembled the crane and sent the components to the jobsite. Lomma’s crews spent three days at Dulles rigging the CC 2800-1 and a fourth day running through test lifts to make sure everything would go smoothly.

Making The Lift

When it came time for the shuttle pick, there was very little left to question. “NASA had everything marked out on the ground—positioning for the Terex crane, the supporting crane, and the 747,” explained Signorelli.

The CC 2800-1 crawler crane was equipped with a 177-foot main boom and a 98-foot Superlift mast. Lomma used 352,000 pounds of main counterweight with no central ballasts. Superlift counterweight of 275,000 pounds was added to the tray 50 feet from the crane base. “Normally, a lift like this would require only 220,000 pounds on the Superlift, but NASA’s additional safety factor required an extra 55,000 pounds on the tray,” explained Barnett.

The additional safety requirement stemmed from the need for workers to be under the live load while unhooking the shuttle from its 747 SAC. “NASA required a 75 percent derate from the crane’s standard 85 percent chart, which is a big safety factor,” said Signorelli.

In the overnight hours, when airport activities were at a lull and winds were calm, Lomma and United Space Alliance crews began the removal of the shuttle. The 747 SAC, supporting crane lifting the front of the shuttle, and CC 2800-1 lifting the heavier back end, were all positioned according to NASA’s layout.

NASA engineers used calculations from the CC 2800-1’s IC-1 controls to map out the final position of the crane. “They wanted the connection between the shuttle and our crane to be at 112 feet,” said Barnett, “and the actual distance in the field from the center of the crane to the hook was 111.9 ft (34.1 m). They were impressed with IC-1’s accuracy.”

Slowly and with precision, the pick began with the weight shifting and then transferring to the cranes as the brackets were removed from the shuttle and carrier. After the shuttle hovered a safe distance over the carrier, a pushback tug backed it from underneath the shuttle. The shuttle was then lowered to within a few feet of the ground. Auxiliary hydraulic power lowered the shuttle’s landing gear for a final time before the cranes lowered it to the ground.

“The subtle movements offered by the CC 2800-1’s hydraulic system definitely helped with this pick,” said Barnett. “If the crews only needed 0.5 inch of movement, the crane was able to give it to them.”

A few days later, Discovery was towed to the Smithsonian and replaced the Space Shuttle Enterprise, which had been on display inside the James S. McDonnell Space Hangar since 2003. This prompted a second pick and final move of the Enterprise to its new home in New York.

Moving the Enterprise

Within a week after the Discovery pick, Lomma’s crews were back at Dulles, this time to reverse the process and load Enterprise on the 747 SAC. With one hoist project already completed, the second pick of the Enterprise went equally as smooth as the Discovery effort. “Enterprise was actually much lighter than Discovery, so we had no issues,” said Signorelli.

A lesser known, but vital link to the shuttle program, Enterprise never made a trip to outer space. It was constructed in the mid-1970s as a prototype tester for what became the final space shuttle design. NASA engineers ran it through a number of flight and landing test simulations to prove the validity of the concept. While NASA initially intended to retrofit Enterprise for space travel, several final shuttle design changes kept it grounded.

Enterprise, via the 747 SAC, took off from Dulles on April 27 for its final home in New York City and landed at JFK International Airport. At the same time, the CC 2800-1 crane components were derigged and loaded onto trucks and trailers heading for New York. Once arriving at JFK, the crane equipment was rigged, tested, and ready for another shuttle pick.

Originally scheduled for the morning hours of May 14, the Enterprise pick was moved up due to inclement weather. “Projected wind speeds were predicted to approach NASA’s 10 mph, which was the wind speed limit for removing the shuttle from its carrier,” said Signorelli.

Even though the CC 2800-1’s configuration for the Enterprise pick was rated for a maximum wind speed of 25 mph, NASA’s tighter wind threshold was followed. “Therefore, they moved the pick up two days to start on May 12,” he added.

Under clear weather conditions and wind speeds flirting with NASA’s threshold, Lomma began the pick just before midnight. Similar with the Discovery project at Dulles, careful planning and constant communication allowed the pick to be completed successfully.


Launch Complex 39: From Saturn to Shuttle to SpaceX and SLS

When astronauts Doug Hurley and Bob Behnken lift off on the SpaceX Crew Dragon Demo-2 mission to the International Space Station (ISS) soon, they will depart from Kennedy Space Center’s historic Pad 39A. It is the same one used by the last NASA astronauts to launch from American soil, the Space Shuttle Atlantis crew in July 2011. Indeed, Launch Complex 39 A and B have been the site of every U.S. human spaceflight that went into orbit since December 1968, including the Apollo 11 lunar landing. That exclusivity will end eventually, as Boeing will launch its Starliner crews to the ISS from the Space Force side of Cape Canaveral, but NASA’s LC-39 (Launch Complex 39) will continue to serve long into the future.

In 1961, when President John F. Kennedy tasked the National Aeronautics and Space Administration (NASA) with landing humans on the Moon by the end of the decade, the agency had no launch pads or stand-alone center in Florida. Its units were tenants on Cape Canaveral Air Force Station, along with the Army, Navy, and other government organizations. All of NASA’s early human spaceflight missions, and most satellite and space probe flights, lifted off from the USAF facility, which was part of the Atlantic Missile Range. Pads were numbered in the order they were built, starting near the tip of Cape Canaveral and running north, mostly in numerical order. The Mercury-Redstone missions used LC-5, Mercury-Atlas LC-14, and Gemini-Titan LC-19. The last astronauts to lift off from the Air Force side were the Apollo 7 crew on a Saturn IB from LC-34 in October 1968.

The Moon landing challenge immediately confronted NASA, however, with the need for a much bigger rocket. Early plans imagined a booster even larger than the Apollo Saturn V turned out to be. The question was where to fire such a monster an accident could unleash the force of a small nuclear weapon. Ideas included Florida, the Georgia Sea Islands, and islands in the Pacific, but the agency soon decided to take a large tract on Merritt Island, just north of the Cape, for LC-39. That meant a massive expansion of NASA’s Florida activity. The Cape-based launch division of Wernher von Braun’s Marshall Space Flight Center in Alabama was spun off as the Launch Operations Center in 1962. It acquired its present name, John F. Kennedy Space Center (KSC), immediately after President Kennedy’s assassination in November 1963.

Engineers at NASA and its contractors also quickly decided they needed a new way to assemble and launch such a gigantic rocket. The reigning method was to stack the vehicle and its payload on the pad, usually inside a service structure that would be pulled back before launch. That could take months when problems cropped up, with some exposure to the elements. It was actually inferior to the Soviet system, which was to assemble the rocket horizontally inside a building on a rail-car erector/launcher. They could roll the vehicle out, set it upright, and launch it in one day, demonstrating that capability by orbiting cosmonauts on consecutive days from the same pad in August 1962. American engineers had no insight into that, but decided that they needed their own mobile launch system. Based on the existing tradition, they decided to stack the rocket vertically on a mobile platform inside a building, then move the platform and rocket out to the pad. The question was how? After looking at several ideas, including barges in the subtropical wetlands that were Merritt Island, they settled on a gigantic tracked vehicle. Strip-mining machines inspired the now-iconic Crawler-Transporter.

The Apollo 14 Saturn V emerges from the Vehicle Assembly Building (VAB) in November 1970, on its way to Pad 39A.

The rockets would be stacked inside the Vertical (later Vehicle) Assembly Building (VAB), which was for a time the world’s largest enclosed human structure. Based on NASA’s optimism about its future in the mid-sixties, it was overbuilt, with four vertical bays, each one of which could contain a Saturn V. There were to be three launch pads, LC-39A, B, and C, but the last was never built. B was constructed largely as a backup, in case a rocket explosion destroyed A. It was used only for Apollo 10, the dress rehearsal for the landing, because it launched only two months before Apollo 11, and preparations for that mission were already underway at 39A.

The first astronauts to launch from LC-39A were the Apollo 8 crew, Frank Borman, Jim Lovell, and Bill Anders, on the first mission to the Moon, the Christmas 1968 flight to lunar orbit. After Apollo, the Skylab space station, a converted Saturn V third stage on two active stages, also flew from A. But all three Skylab crews ascended to space from 39B on Saturn IBs. To save money, NASA mothballed the old Saturn IB Pads 34 and 37, and put a “milk stool” on one of the launch platforms, lifting the rocket over a hundred feet so that the rocket’s second stage, which was the same as the Saturn V’s third, would be at the right height for the propellant lines, cables, and astronaut access arm. KSC used that odd-looking launcher and Pad 39B for the Apollo Soyuz Test Project in 1975 as well. Then, no American astronauts flew for nearly six years—the longest hiatus ever. (Since 2011, Americans have been riding Russian Soyuz spacecraft to and from the ISS in the absence of a U.S. launcher.)

NASA’s next human spaceflight program, the Space Shuttle, was much delayed and on a tight budget, so the agency adapted LC-39 to the winged vehicle. KSC stacked the much shorter shuttle inside the tall bays of the VAB and took the gantry tower off the launch platform and installed it on the pad. The shuttle rode out to the launch pad on a bare platform. A rotating service structure then moved to cover the shuttle and provide access to the payload bay. The first shuttle launch left from 39A in April 1981, as did the next 23. Pad B’s refitting was delayed by budget problems, so its first launch unfortunately was the Challenger disaster of January 1986, killing Teacher-in-Space Christa McAuliffe and six NASA astronauts. After the shuttle returned to flight in 1988, the two pads were used almost equally for the next 20 years. Then B was taken out of service to retrofit for President George W. Bush’s soon-to-be-canceled Constellation Moon landing program.

After the last shuttle mission in 2011, NASA, once again looking for ways to save money, decided to lease out Pad 39A. After a contentious bidding process, it awarded a 20-year lease to SpaceX in 2013/14. The company’s engineers have modified it so that it can host either Falcon 9 or Falcon Heavy (which has three Falcon 9 first stages bolted together) rockets. Whether the Russians have had any influence, I don’t know, but SpaceX built a horizontal assembly building next to 39A, with a wheeled erector/launcher to take the complete vehicle out and set it upright. It later added a new launch umbilical tower with an astronaut access arm for Crew Dragon launches on Falcon 9.

A SpaceX Falcon 9 rocket with the Crew Dragon spacecraft is raised into position on Pad 39A ahead of the Demo-2 mission to the International Space Station in May 2020.

As for LC-39B, it has been outfitted for multiple vehicles, but its primary purpose will be to host the gigantic Space Launch System (SLS) rocket, a Saturn-V-sized monster that will send American astronauts to the Moon again. The first unpiloted test, Artemis 1, has repeatedly slipped, but is planned for late 2021. NASA recently completed the modification of the VAB, launch platforms, and the pad for SLS, so we will see the Crawler-Transporter hauling a rocket out to the launch pad again. In 2015, the agency also built a new 39C pad for small, commercial satellite launch vehicles, but it does not appear to have been used yet.

Thus, when Bob Behnken and Doug Hurley take off, they will ascend from a historic pad, one used for the first human trips to the Moon and many important shuttle flights. Launch Complex 39 will continue to support groundbreaking journeys in the human exploration of space well into the future, more than 50 years after its baptism-by-fire in the first Saturn V launch in 1967.

Michael J. Neufeld is a senior curator in the Museum’s Space History Department and is responsible for the rocket and missile and Mercury/Gemini spacecraft collections.


Space Shuttle Crawler - HISTORY

    Opće informacije : Basic information about each mission in the Space Shuttle. : Technical details on the orbiter. : A fine collection of materials relating to each Space Shuttle mission including an impressive collection of images. Rich Orloff has scanned and formatted press kits for all the Shuttle flights except for dedicated DoD missions KSC Historical Report 19, KHR-19, Rev. April 2006. This summary of the United States Space Shuttle Program firsts was compiled from various reference publications available in the Kennedy Space Center Library Archives.

Papers and Technical Information : Info on the "glass cockpit" and other advanced technologies. this is a good resource for basic technical data. . A paper arguing that lessons learned from early attempts to use atmospheric flight navigation should be studied to lower the probability of schedule slips and cost overruns on future programs. . A paper arguing that lack of insight into GNSS software complicates the integration and test process. . A list of papers on Space Shuttle avionics. . Space Shuttle orbiter technical diagrams from Space Shuttle News Reference (NASA).


Svemirski brod Challenger

Svemirski brod Challenger (OV-099) was a Space Shuttle orbiter manufactured by Rockwell International and operated by NASA. Named after the commanding ship of a nineteenth-century scientific expedition that traveled the world, Challenger was the second Space Shuttle orbiter to fly into space after Columbia, and launched on its maiden flight in April 1983. It was destroyed in January 1986 soon after launch in an accident that killed all seven crewmembers aboard. Initially manufactured as a test article not intended for spaceflight, it was utilized for ground testing of the Space Shuttle orbiter's structural design. However, after NASA found that their original plan to upgrade Enterprise for spaceflight would be more expensive than upgrading Challenger, the orbiter was pressed into operational service in the Space Shuttle program. Lessons learned from the first orbital flights of Columbia led to Challenger ' s design possessing fewer thermal protection system tiles and a lighter fuselage and wings. This led to it being 1,000 kilograms (2,200 pounds) lighter than Columbia, though still 2,600 kilograms (5,700 pounds) heavier than Discovery.

During its three years of operation, Challenger was flown on ten missions in the Space Shuttle program, spending over 62 days in space and completing almost 1,000 orbits around Earth. Following its maiden flight, Challenger supplanted Columbia as the leader of the Space Shuttle fleet, being the most-flown orbiter during all three years of its operation while Columbia itself was seldom used during the same time frame. Challenger was used for numerous civilian satellite launches, such as the first Tracking and Data Relay Satellite, the Palpa B communications satellites, the Long Duration Exposure Facility, and the Earth Radiation Budget Satellite. It was also used as a test bed for the Manned Maneuvering Unit (MMU) and served as the platform to repair the malfunctioning SolarMax telescope. In addition, three consecutive Spacelab missions were conducted with the orbiter in 1985, one of which being the first German crewed spaceflight mission. Passengers carried into orbit by Challenger include the first American female astronaut, the first American female spacewalker, the first African-American astronaut, and the first Canadian astronaut.

On its tenth flight in January 1986, Challenger disintegrated 73 seconds after liftoff, killing the seven-member crew of STS-51-L that included Christa McAuliffe, who would have been the first teacher in space. The Rogers Commission convened shortly afterwards concluded that an O-ring seal in one of Challenger ' s solid rocket boosters failed to contain pressurized burning gas that leaked out of the booster, causing a structural failure of Challenger ' s external tank and the orbiter's subsequent disintegration due to aerodynamic forces. NASA's organizational culture was also scrutinized by the Rogers Commission, and the Space Shuttle program's goal of replacing the United States' expendable launch systems was cast into doubt. Gubitak Challenger and its crew led to a broad rescope of the program, and numerous aspects of it – such as launches from Vandenberg, the MMU, and Shuttle-Centaur – were scrapped to improve crew safety Challenger i Atlantis were the only orbiters modified to conduct Shuttle-Centaur launches. The recovered remains of the orbiter are mostly buried in a missile silo located at Cape Canaveral LC-31, though some pieces are on display at the Kennedy Space Center Visitor Complex.


Pogledajte video: Совалката Атлантис излита днес?. 09:00 (Avgust 2022).